El osciloscopio en el automóvil

El osciloscopio en el automóvil: usos, señales y diagnosis

Explicación técnica del uso del osciloscopio en automoción, imprescindible para analizar señales eléctricas de sensores y actuadores. Incluye configuración básica, lectura de formas de onda y aplicaciones prácticas en diagnóstico de averías.

Pantalla de osciloscopio utilizada en el automóvil para configurar canales, escalas de tensión y base de tiempos
Pantalla de osciloscopio utilizada en el automóvil para configurar canales, escalas de tensión y base de tiempos durante el diagnóstico electrónico.

La imagen muestra la pantalla de un osciloscopio utilizado en el automóvil, donde se representan los ajustes básicos necesarios para el análisis de señales eléctricas en sistemas electrónicos del vehículo. En la interfaz se observan los controles de selección de canales, la escala de tensión en voltios, la base de tiempos en milisegundos y las opciones de disparo, elementos fundamentales para una correcta visualización de las señales.

El osciloscopio permite analizar el comportamiento real de los sistemas eléctricos y electrónicos del automóvil, mostrando formas de onda que no pueden interpretarse únicamente con un multímetro. La correcta configuración de la tensión, el tiempo y el tipo de señal es clave para diagnosticar sensores, actuadores, señales digitales, sistemas de encendido, inyección y comunicaciones electrónicas.

Este tipo de imágenes resulta especialmente útil en la formación técnica, ya que ayuda a comprender cómo ajustar el osciloscopio antes de realizar mediciones reales en el vehículo y cómo interpretar posteriormente las señales obtenidas. La imagen acompaña el contenido técnico publicado en donde se explica en detalle qué es el osciloscopio, cómo utilizarlo en el automóvil, la función de cada ajuste y su aplicación práctica en el diagnóstico de averías eléctricas y electrónicas.

1 ¿Qué es un osciloscopio?

El osciloscopio es básicamente un dispositivo de visualización gráfica que muestra señales eléctricas variables en el tiempo. El eje vertical, a partir de ahora denominado Y, representa el voltaje; mientras que el eje horizontal, denominado X, representa el tiempo.

2. ¿Qué podemos hacer con un osciloscopio?.

Básicamente esto:

  • Determinar directamente el periodo y el voltaje de una señal.
  • Determinar indirectamente la frecuencia de una señal.
  • Determinar que parte de la señal es DC y cual AC.
  • Localizar averías en un circuito.
  • Medir la fase entre dos señales.
  • Determinar que parte de la señal es ruido y como varia este en el tiempo.

Los osciloscopios son de los instrumentos más versátiles que existen y lo utilizan desde técnicos de reparación de televisores a médicos. Un osciloscopio puede medir un gran número de fenómenos, provisto del transductor adecuado (un elemento que convierte una magnitud física en señal eléctrica) será capaz de darnos el valor de una presión, ritmo cardiaco, potencia de sonido, nivel de vibraciones en un coche, etc.

2. Terminología. El calidoscopio en el automóvil

Estudiar sobre un tema implica conocer nuevos términos técnicos. Este capitulo se dedica a explicar los términos más utilizados en relación con el estudio de los osciloscopios.

2.1. Términos utilizados al medir

Existe un término general para describir un patrón que se repite en el tiempo: onda. Existen ondas de sonido, ondas oceánicas, ondas cerebrales y por supuesto, ondas de tensión. Un osciloscopio mide estas últimas. Un ciclo es la mínima parte de la onda que se repite en el tiempo. Una forma de onda es la representación gráfica de una onda. Una forma de onda de tensión siempre se presentará con el tiempo en el eje horizontal (X) y la amplitud en el eje vertical (Y).

La forma de onda nos proporciona una valiosa información sobre la señal. En cualquier momento podemos visualizar la altura que alcanza y, por lo tanto, saber si el voltaje ha cambiado en el tiempo (sí observamos, por ejemplo, una línea horizontal podremos concluir que en ese intervalo de tiempo la señal es constante). Con la pendiente de las líneas diagonales, tanto en flanco de subida como en flanco de bajada, podremos conocer la velocidad en el paso de un nivel a otro, pueden observarse también cambios repentinos de la señal (ángulos muy agudos) generalmente debidos a procesos transitorios.

2.2. Tipos de ondas

Se pueden clasificar las ondas en los cuatro tipos siguientes:

  • Ondas senoidales
  • Ondas cuadradas y rectangulares
  • Ondas triangulares y en diente de sierra.
  • Pulsos y flancos ó escalones.

2.2.1. Ondas senoidales

Son las ondas fundamentales y eso por varias razones: Poseen unas propiedades matemáticas muy interesantes (por ejemplo con combinaciones de señales senoidales de diferente amplitud y frecuencia se puede reconstruir cualquier forma de onda), la señal que se obtiene de las tomas de corriente de cualquier casa tienen esta forma, las señales de test producidas por los circuitos osciladores de un generador de señal son también senoidales, la mayoría de las fuentes de potencia en AC (corriente alterna) producen señales senoidales. 

La señal senoidal amortiguada es un caso especial de este tipo de ondas y se producen en fenómenos de oscilación, pero que no se mantienen en el tiempo.

2.2.2. Ondas cuadradas y rectangulares

Las ondas cuadradas son básicamente ondas que pasan de un estado a otro de tensión, a intervalos regulares, en un tiempo muy reducido. Son utilizadas usualmente para probar amplificadores (esto es debido a que este tipo de señales contienen en sí mismas todas las frecuencias). La televisión, la radio y los ordenadores utilizan mucho este tipo de señales, fundamentalmente como relojes y temporizadores. 

Las ondas rectangulares se diferencian de las cuadradas en no tener iguales los intervalos en los que la tensión permanece a nivel alto y bajo. Son particularmente importantes para analizar circuitos digitales.

2.1.3. Ondas triangulares y en diente de sierra

En ellas las transiciones entre el nivel mínimo y máximo de la señal cambian a un ritmo constante. Estas transiciones se denominan rampas. La onda en diente de sierra es un caso especial de señal triangular con una rampa descendente de mucha más pendiente que la rampa ascendente.

2.1.4. Pulsos y flancos ó escalones

Señales, como los flancos y los pulsos, que solo se presentan una sola vez, se denominan señales transitorias. Un flanco ó escalón indica un cambio repentino en el voltaje, por ejemplo cuando se conecta un interruptor de alimentación o se alimenta a un inyector. En el ejemplo de la conexión de un interruptor, el pulso indicaría que se ha conectado el interruptor y en un determinado tiempo se ha desconectado.

3. Medidas en las formas de onda.

En esta sección describimos las medidas más corrientes para describir una forma de onda.

3.1. Periodo y Frecuencia

Si una señal se repite en el tiempo, posee una frecuencia (f). La frecuencia se mide en Hercios (Hz) y es igual al numero de veces que la señal se repite en un segundo, es decir, 1Hz equivale a 1 ciclo por segundo. Una señal repetitiva también posee otro parámetro: el periodo, definiendose como el tiempo que tarda la señal en completar un ciclo. Período y frecuencia son recíprocos el uno del otro:

3.2. Voltaje

Voltaje es la diferencia de potencial eléctrico entre dos puntos de un circuito. Normalmente uno de esos puntos suele ser masa (GND, 0v), pero no siempre, por ejemplo se puede medir el voltaje pico a pico de una señal (Vpp) como la diferencia entre el valor máximo y mínimo de esta. La palabra amplitud significa generalmente la diferencia entre el valor máximo de una señal y masa.

3.3. Fase.

La fase se puede explicar mucho mejor si consideramos la forma de onda senoidal. La onda senoidal se puede extraer de la circulación de un punto sobre un circulo de 360º. Un ciclo de la señal senoidal abarca los 360º.

Cuando se comparan dos señales senoidales de la misma frecuencia puede ocurrir que ambas no estén en fase (caso del alternador), o sea, que no coincidan en el tiempo los pasos por puntos equivalentes de ambas señales. En este caso se dice que ambas señales están desfasadas, pudiéndose medir el desfase con una simple regla de tres:

Siendo t el tiempo de retraso entre una señal y otra.

4. Técnicas de medida

4.1. Introducción

Esta sección explica las técnicas de medida básicas con un osciloscopio. Las dos medidas más básicas que se pueden realizar con un osciloscopio son el voltaje y el tiempo, al ser medidas directas.

Esta sección describe como realizar medidas visualmente en la pantalla del osciloscopio. Algunos osciloscopios digitales poseen un software interno que permite realizar las medidas de forma automática. Sin embargo, si aprendemos a realizar medidas de forma manual, estaremos también capacitados para chequear las medidas automáticas que realiza un osciloscopio digital.

4.2. La pantalla

Fíjate en la siguiente figura que representa la pantalla de un osciloscopio. Deberás notar que existen unas marcas en la pantalla que la dividen tanto en vertical como en horizontal, forman lo que se denomina retícula ó rejilla. La separación entre dos líneas consecutivas de la rejilla constituye lo que se denomina una división. Normalmente la rejilla posee 10 divisiones horizontales por 8 verticales del mismo tamaño (cercano al cm), lo que forma una pantalla más ancha que alta. En las líneas centrales, tanto en horizontal como en vertical, cada división ó cuadro posee unas marcas que la dividen en 5 partes iguales (utilizadas como veremos más tarde para afinar las medidas) 

Algunos osciloscopios poseen marcas horizontales de 0%, 10%, 90% y 100% para facilitar la medida de tiempos de subida y bajada en los flancos (se mide entre el 10% y el 90% de la amplitud de pico a pico). Algunos osciloscopios también visualizan en su pantalla cuantos voltios representa cada división vertical y cuantos segundos representa cada división horizontal.

4.2. Medida de voltajes.

Generalmente cuando hablamos de voltaje queremos realmente expresar la diferencia de potencial eléctrico, expresado en voltios, entre dos puntos de un circuito. Pero normalmente uno de los puntos esta conectado a masa (0 voltios) y entonces simplificamos hablando del voltaje en el punto A (cuando en realidad es la diferencia de potencial entre el punto A y GND). Los voltajes pueden también medirse de pico a pico (entre el valor máximo y mínimo de la señal). Es muy importante que especifiquemos al realizar una medida que tipo de voltaje estamos midiendo.

El osciloscopio es un dispositivo para medir el voltaje de forma directa. Otros medidas se pueden realizar a partir de esta por simple cálculo (por ejemplo, la de la intensidad ó la potencia). Los cálculos para señales CA pueden ser complicados, pero siempre el primer paso para medir otras magnitudes es empezar por el voltaje.

En la figura anterior se ha señalado el valor de pico VP, el valor de pico a pico Vpp, normalmente el doble de Vp y el valor eficaz Vef ó VRMS (root-mean-square, es decir la raíz de la media de los valores instantáneos elevados al cuadrado) utilizada para calcular la potencia de la señal CA.

Realizar la medida de voltajes con un osciloscopio es fácil, simplemente se trata de contar el número de divisiones verticales que ocupa la señal en la pantalla. Ajustando la señal con el mando de posicionamiento horizontal podemos utilizar las subdivisiones de la rejilla para realizar una medida más precisa. (Recordar que una subdivisión equivale generalmente a 1/5 de lo que represente una división completa). Es importante que la señal ocupe el máximo espacio de la pantalla para realizar medidas fiables, para ello actuaremos sobre el conmutador del amplificador vertical

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

*

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.